Retinoic Acid Promotes the Generation of Pancreatic Endocrine Progenitor Cells and Their Further Differentiation into β-Cells

نویسندگان

  • Maria Öström
  • Kelly A. Loffler
  • Sara Edfalk
  • Lars Selander
  • Ulf Dahl
  • Camillo Ricordi
  • Jongmin Jeon
  • Mayrin Correa-Medina
  • Juan Diez
  • Helena Edlund
چکیده

The identification of secreted factors that can selectively stimulate the generation of insulin producing beta-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based beta-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of beta-cells during normal pancreatic development such putative factors may be identified. In the mouse, beta-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of beta-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when beta-cells are generated. We also provide evidence that RA induces the generation of Ngn3(+) endocrine progenitor cells and stimulates their further differentiation into beta-cells by activating a program of cell differentiation that recapitulates the normal temporal program of beta-cell differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Co-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells

  Objective(s): Sertoli cells support in vivo germ cell production; but, its exact mechanism has not been well understood. The present study was designed to analyze the effect of Sertoli cells in differentiation of mouse embryonic stem cells (mESCs) to germ cells.   Materials and Methods: A fusion construct composed of a Stra8 gene promoter and the coding region of enhanced green fluorescence p...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008